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Can tree seedlings survive increased flood levels

of rivers?

H.N. Siebel� M. van Wijkt and C.W.P.M. BlomIt

SUMMARY

Flood tolerance and the avoidance of severe flood conditions in tree

seedlings were examined experimentally to elucidate tree zonation along the

Rhine and determine the effect of higher floods. In comparison with

seedlings of Acer campestre from only incidentally flooded forest, seedlings

of Fraxinus excelsior, Quercus robur and Ulmus minor from hardwood

floodplain forest and Alnus glutinosa and Populus nigra from softwood

floodplain forest showed a high tolerance to partial submergence. This partly

correlated with morphogenetic adaptations, e.g. adventitious rooting and

hypertrophy of stems and lenticels. Seedlings of all species were much more

sensitive to total submergence than to partial submergence, especially when

light transmission during flooding was strongly reduced. Seedlings of trees

from softwood floodplain forest were able to endure longer periods of total

submergence than those of hardwood floodplain forest. Because of their

relative slow extension growth rates, seedlings of species from hardwood

floodplain forest cannot avoid being totally submerged when flooded on low-

lying sites. Therefore, the higher flood levels of the Rhine strongly reduce the

likelihood of tree species from hardwood floodplain forests establishing on

low-lying sites along this river.

Key-words: Alnus glutinosa, floodplain forest, Fraxinus excelsior, Populus

nigra, Quercus robur, Ulmus minor.
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In the Rhine system, two main floodplain forest types are distinguished: frequently
flooded pioneer softwood forest mainly occurring on low-lying sites, and hardwood

floodplain forest of later successional stages mostly on higher elevations (Dister 1984;

Hiigin & Henrichfreise 1992; Schnitzler 1995). The softwood forest consists of Alnus

spp., Populus spp. and Salix spp. The hardwood forest is dominated by Fraxinus

excelsior, Quercus rohur and Ulmus minor. Most of the natural floodplain forests in

Western Europe, particularly the hardwood ones, have been excluded from flooding or

have long since been felled, and what little remains has mostly been greatly altered by

forestry (Schnitzler 1994). Although plans have recently been made for the restoration

of floodplain forests along the Rhine, little information is available about the es-

tablishment of tree species and forest development in relation to the present flooding

dynamics. It is known that, in common with most rivers, the flooding dynamics of the
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The floodtolerance in tree seedlings depends on the level to which they are submerged.

In general, totally submerged tree seedlings survive flooding for shorter periods than

partially submerged ones (Gill 1970; Kozlowski 1984; Good et al. 1992). Several

morphogenetic adaptations such as adventitious rooting, hypertrophic swelling of

lenticels and stem hypertrophy are thought to prolong tree seedling survival during

partial submergence by enhancing internal aeration (Kozlowski 1984; Armstrong et al.

1994). The mortality rates of totally submerged plants are much higher at low light

intensity in the water than at high light intensity (Blom et al. 1994). Light levels decrease

down the water column, which may also influence the ability of tree seedlings to survive

total submergence. To determine the flood tolerance of tree seedlings and some of the

underlying adaptive mechanisms, we also examinedthe morphological response, damage

and survival of tree seedlings in relation to depth of submergence and light availability.

Tree seedlings can avoid the more severe conditionsof total submergence by growing

rapidly in height to above flood level before a flood period occurs. The extension

growth of tree seedlings can be retarded by flooding (Frye & Grosse 1992). This

increases the likelihoodof the seedlings being totally submerged during the next flooding

period, which is why the extent to which extension growth is affected by flooding is

important. Thus, to determine if tree seedlings can avoid being totally submerged, we

examined their extension growth and how this is affected by flooding.

The study included seedlings of F. excelsior L., Q. robur L., U. minor Miller, P. nigra

L., and A. glutinosa (L.) Gaertn. For comparison Acer campestre L. from only

incidentally flooded sites in floodplain forests was included in some of the experiments.

Our hypothesis was that species from softwood floodplain forests which at present

survive at low-lying elevations near the river are better able to avoid total submergence,

because of rapid extension growth, and are more tolerant of total submergence and

are therefore better adapted to higher flood levels than the other species.

MATERIALS AND METHODS

Plant material

Plant material was collected from individual populations in the river area in the

Netherlands. A. campestre and F. excelsior were collected in early spring as young

seedlings with only cotelydons present. The other species were grown from seed. Seeds

of U. minor and P. nigra were sown immediately after collection at the end of spring.
Seeds of Q. robur and A. glutinosa were collected in autumn, stored at 4°C and sown

in early spring. A few weeks after germination the seedlings were transplanted into

Rhine have changed during the past 1000 years. Flood levels have risen as a result of

the accelerated water discharge upstream and the construction of dikes which have

drastically narrowed the floodplain (Blom et al. 1990).

Investigating flood tolerance and avoidance of severe flooding conditions in species

and the underlying adaptive mechanisms helps explain plant zonation along rivers

(Blom et al. 1996; Blom & Voesenek 1996). As tree species are most sensitive to flooding

during their early life stages (Gill 1970; Kozlowski 1984; Siebel & Blom 1998), tree

zonation depends largely on the flooding resistance of their seedlings. Therefore, to

elucidate tree zonation and determine the effect of higher flood levels, we examined

flood tolerance and avoidance of severe flooding conditions in tree seedlings of six

species from West European floodplain forests.
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plastic containers (diameter 14 cm, content 21) filled with clay collected from the river

foreland near Wageningen (The Netherlands). The seedlings were kept outdoors until

the start of the experiment.

Total versus partial submergence

In the first experimental series the effect of partial and total submergence on survival,

growth and morphological response was examined. The experiment was performed in

a greenhouse (20°C) to approach severe summer flooding conditions and started on 10

May 1994. One-year-old seedlings of A. campestre, A. glutinosa, F. excelsior and U.

minor and 2-year-old seedlings of P. nigra of about the same weight were used. The

plants were randomly divided into three groups (n =7): freely draining but watered

regularly, partially submerged to a depth of 5 cm or totally submerged in clear water

65 cm deep. After 10 weeks the dry weight of adventitious roots, primary roots, stems

and leaves and the length growth and hypertrophy of stems and lenticels were determined.

Stem hypertrophy was detected by a larger stem diameter increase in flooded plants

compared to non-flooded plants and a deviating stem anatomy checked under the

microscope. Hypertrophy of lenticels was observed from strongly increased lenticel

diameter. The hypertrophied lenticels were counted. Dry weights of stem, leaves and

roots were determined after removal of dead parts. Death of root parts was assessed

on thebasis of discolourationand disintegration of the outer root layers. A tree seedling

was considered not to have survived if the underground root system had totally died

or if the stem had died back to below the lowest lateral bud.

Effect of light and of depth of total submergence

The influence of duration and depth of total submergence and light availability on

damage and survival of tree seedlings was examined in a completely randomized three-

way block design. The experiment started on 6 May 1994 in an outdoor basin. It

involved totally submerging 1-year-old seedlings of A. glutinosa, F. excelsior, Q. robur

and U. minor in clear water with a water column above the soil of 30 or 70 cm for 3,

6, 9 or 15 weeks. Half the plants were placed in a part of the basin which was covered

with polythene sheeting resulting in dark flooding conditions (1% daylight). In the clear

water light levels differed very little between the two flooding depths. Five plants were

sampled from each durationand treatment. Additionalgroups of non-flooded seedlings

were sampled at the beginning and end of the experiment. Plantmeasurements included

dry weight of leaves, stems and roots. The flooded seedlings were sampled 3 days after

the end of the flooding period to account for additional effects such as the loss of

leaves, which occurred within a few days after flooding. Treatment differences in dry

weight of leaves, stems or roots were tested for each species by analysis of variance

after logarithmic transformation in which initial stem diameterwas used as a covariable.

Treatment differences in mortality were analysed using multiple logit regression.

Extension growth

To find out whether tree seedlings can avoid total submergence by growing in height

before a flood occurs, we measuredtheextension growth of seedlings in The Netherlands

in the field and of first-year seedlings grown in containers filled with clay in an

experimental garden. Yearly height increment of plants in the field was estimated on
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the basis of year growth scars on the stem, substantiated with tree ring counts. Only

plants without visible stem damage were used. F. excelsior, Q. robur and U. minor

seedlings were sampled in a non-flooded hardwood floodplain forest. Those of A.

glutinosa and P. nigra were sampled on a river bank that was not flooded in the growing

season of the preceding 3 years.

Effect offlooding on growth

The effect of flooding on damage and recovery, especially in relation to extension

growth, was studied in detail in F. excelsior and Q. robur to determine to what extent

this further reduces the likelihood that species with a slow extension growth will grow

above normal flood level. The damage and growth of first-year seedlings during flooding

and their subsequent recovery were examined in relation to duration of flooding, flood

depth and light availability in a completely randomizedthree-way block design. Seedlings

were either partially submerged with a water column above the soil of 5 cm or totally

submerged with a water column above the soil of 50 cm. They were submerged for 2,

4, 7 or 12 weeks. Half the plants were subjected to a reduced light treatment of

approximately 15% full daylight. Flooding took place in an outdoor basin of 8 x 2-5 m

in the experimental garden of the University of Nijmegen (The Netherlands) and started

on 10 May 1993. Eight Q. robur and 10 F. excelsior seedlings were used for each

treatment. Four plants from each group were sampled after the end of a flooding

treatment. To determine recovery, the other plants were sampled the following year on

1 September. Additional groups of non-flooded seedlings were sampled at 0, 4 and 12

weeks and the following year. Measurements included stem length, stem diameter at

3 cm above soil surface and dry weight of roots, stems and leaves. When stems died

back during flooding, stem length was measured to where the stem was observed to be

brown or black. Stem length and stem diameter of each plant were also measured at

the beginning of the experiment. Treatment differences in dry weight of leaves, stems

or roots between flooding durations were tested per species and flood level by analysis

of variance after logarithmic transformation in which stem diameter at the start of the

experiment was used as a covariable to correct for variation in initial plant weight.

RESULTS

Partial versus total submergence

Only six seedlings of P. nigra and two of A. glutinosa and U. minor of an initial seven

plants survived 10 weeks of total submergence. All other species were totally killed.

Totally submerged seedlings did not show adventitious rooting or hypertrophy of stems

and lenticels.

After 10 weeks of partial submergence all seedlings of A. campestre and one of F.

excelsior and U. minordied. All species except A. glutinosa showed considerable damage

of their original root system and the root dry weight was significantly lower (/-test,

F<0-05) than that of the plants in freely draining soil (Fig. 1). In A. glutinosa, the loss

of roots was largely compensated by the formation of adventitious roots on the

submerged parts of the stem. In none of the species significant differences in length

growth and total plant weight were found between plants in freely draining soil and

partially submerged plants that survived. When partially submerged, all plants produced

adventitious roots and hypertrophied lenticels, although to different degrees (Table 1).
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Species

Acer campestre

Fraxinus excelsior

Quercus robur

Ulmus minor

Alnus glutinosa

Populus nigra

Stem Adventitious Hypertrophied

hypertrophy rooting lenticels

+

+

+

+ +

+ + + +

+ + + +

+ + +

+ + + +

+ +

Only three species showed stem hypertrophy. Under the microscope a distinct boundary

was often observed in the xylem of these species between the smaller cells formed before

flooding and larger cells formed during flooding. No significant increase of bark

thickness was found compared to non-floodedplants.

Effect of light and depth of total submergence

Depth of flooding had no significant effect on plant weight during total submergence

(Table 2). There was, however, a negative effect of shading during total submergence

in all species (Fig. 2). The size of the response to shading during total submergence

varied among the species. In both A. glutinosa and F. excelsior the light availability

during total submergence had a clear effect on weight of stem and roots, but this effect

was much less evident in Q. robur and U. minor. All species shed their leaves within a

month of being flooded. Seedlings of A. glutinosa and F. excelsior died significantly

sooner (/
, <0 05) during total submergence in the dark, but this was not found in the

other two species (Fig. 3).

— =not detected, + =present, + + =present and more than 5% of plant dry weight allocated to adventitious

roots or more than 10 hypertrophied lenticels present. Data on Quercus robur are from the experiment on

the effect of flooding on extension growth.

Fig. 1. Dry weight of roots ofthe tree seedlings after 10 weeks ofpartial submergence (P) or freely draining
conditions (D) as percentage of total plant weight. □, Adv. roots; ■, roots.

Table 1. Morphological adaptation of tree seedlings to partial submergence

Species Stem

hypertrophy

Adventitious

rooting

Hypertrophied
lenticels

Acer campestre — + +

Fraxinus excelsior + + + + +

Quercus robur + + + + +

Ulmus minor — + + +

Alnus glutinosa + + + + +

Populus nigra — + +
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Source of variation

Alnus glutinosa
Duration (Du)

Light (Li)

Depth (De)
Du x Li

Du x De

Li x De

Du x Li x De

Dry weight
stems Roots Total

Quercus robur

Duration

Light

Depth
Du x Li

Du x De

Li x De

Du x Li x De

Ulmus minor

Duration

Light
Depth
Du x Li

Du x De

Li x De

Du x Li x De

** ***

� ��� **�

** * ** ***

*** **

** *

_

���

**
_

* . —
—

Extension growth

The extension growth of seedlings of the species from hardwood floodplain forests was

only about cm per year (Table 3). These plants often needed at least 4 years to

attain a height of 50 cm. Although F. excelsior and Q. robur were taller than the other

species at the beginning of summer in their first growing season, the other species had

caught up or even surpassed them the end of their first growing season. Seedlings of

A. glutinosa and P. nigra were only found as pioneers in well-illuminated sites. They

mostly attained a height of 50 cm or more in 2 years. Average extension growth in the

experimental garden was similar to that found in the field except for A. glutinosa, which

grew less in height in the field population.

Effect offlooding on growth

No significant effect of light availability was found on the growth response to partial
and total submergence ofF. excelsior and Q. robur. Therefore, shaded and unshaded

plants were pooled when investigating the effect of partial and total submergence (Fig.

4). Partially submerged F. excelsior continued to grow. In Q. robur a significant decrease

in root weight was counterbalancedby an increase in weight of stem and leaves. After

— =non-significant, * =P<0-05, **
=P<(K)I, ***

=P<0 001. (because of high mortality Fraxinus excelsior

could not be analysed).

Table 2. Analysis of variance of effect of depth of total submergence, duration (3, 6, 9 weeks)
and light availability during submergence and their interactions on dry weight of stems, roots

and total seedling weight 3 days after flooding

Source of variation

Dry weight
stems Roots Total

Alnus glutinosa

Duration (Du)
** *** � **

Light (Li) � **�

Depth (De) — — —

Du x Li ** *** **�

Du x De
— — —

Li x De
— — —

Du x Li x De
- - -

Quercus robur

Duration —

*** **

Light -

** *

Depth — - -

Du x Li — —

—

Du x De — — —

Li x De
— — —

Du x Li x De -
- -

Ulmus minor

Duration —

� ��

Light
*�

— -

Depth — — —

Du x Li *
— —

Du x De — —
—

Li x De — — —

Du x Li x De — —
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U. minor

Q. robur

F. excelsior

A. glutinosa

Fig. 3. Duration of total submergencewhich resulted in 50% of the tree seedlings dying (LDso) in unshaded

or shaded ( = 1% full daylight)conditions. Bars indicate the 95% confidence interval. ■, shaded; □, unshaded.

Alnus glutinosa
Fraxinus excelsior

Fig. 2. Cumulative mean dry weight ofroots, stems and leaves oftree seedlings 3 days after total submergence

in relation to duration of total submergence and light availability during total submergence. U =unshaded,

S =strongly shaded (1% full daylight). □, Leaves; □, stems; ■, roots.
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Species

Fraxinus excelsior

Quercus robur

Ulmus minor

Alnus glutinosa

Populus nigra

14-8

170

13-9

38 1

16-6

Pot Field Year

1 n 1 2 3 4 n

10 12-3 29-7 46-3 61 9 12

8 18-2 28-6 39-5 9

11 13-2 32-5 461 65-8 7

11 16 8 57-7 94-5 13

12 13-9 50-6 7

Table 3. Mean height (cm) at the end of the season of tree seedlings grown in pots in an

experimental garden and in successive years in field populations where no severe flooding had

occurred during these years

Fig. 4. Cumulative mean dry weight of roots, stems and leaves of tree seedlings 3 days after treatment in

relation to the duration of this treatment. D
=freely draining conditions, P =partial submergence, T=total

submergence. □, Leaves; □, stems; ■, roots.

Species

Pot

1

Field

n

Year

1 2 3 4 n

Fraxinus excelsior 14-8 10 12-3 29-7 46-3 61 9 12

Quercus robur 170 8 18-2 28-6 39-5 9

Ulmus minor 13-9 11 13-2 32-5 46 1 65-8 7

Alnus glutinosa 381 11 16 8 57-7 94-5 13

Populus nigra 16-6 12 13-9 50-6 7
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12 weeks of partial submergence both species showed significantly (t-test, P<0-05) less

root biomass but more stem biomass than seedlings grown under drained conditions.

Root mortality and stem dieback during total submergence caused a significant decrease

in weight of roots and stems of F. excelsior seedlings. After 12 weeks 45% of the

seedlings had died. Q. robur seedlings showed less root mortality and stem dieback

during total submergence, which did not result in a significant decrease in weight of

roots and stems. Only one Q. robur plant died after 12 weeks of total submergence.

One year later, a significant (P<0001) decrease in weight of roots, stems and leaves

at increasing duration of total submergence was still present in both species. Seedlings

which were totally submerged for 12 weeks the previous year had reached about a

quarter of the total plant weight of unflooded seedlings in both species. However, 1

year later no significant differences in stem, leafand root weight of both species were

present between partially submerged seedlings and seedlings on freely draining soil a

year later.

The stem dieback during total submergence resulted in a significant decrease in

height, which was still present 1 year later (Fig. 5). Partially submerged seedlings

showed a significantly larger increase in stem length than unflooded plants. However,

these differences were small compared to average stem length, which was about 18 cm

at the start of the experiment in both species.

DISCUSSION

The tolerance of partial submergence we found in our experiments is in agreement with

tree zonation and correlates partly with morphogenetic adaptations. The seedlings of

A. campestre, a species which only grows on incidentally flooded sites, were sensitive

to partial submergence and showed only a few hypertrophied lenticels and adventitious

roots. No increased stem diameter growth as an indication of stem hypertrophy was

observed in A. campestre. Frye & Grosse (1992) also found this lack of response in A.

campestre and in other tree species which occur only on incidentally flooded sites and

are sensitive to partial submergence. Seedlings of the main species from hardwood

floodplain forests we examined showed a high tolerance to partial submergence. The

1-year-old seedlings of Q. robur and F. excelsior survived at least 3 months of partial

submergence (including part of the summer) without much damage, as was also found

by Frye & Grosse (1992). The same was found for U. minor partially submerged for a

period of at least 4 months (Siebel, unpublished results). However, this only applies to

shallow flooding, as mature trees of F. excelsior die when partially submerged in 1-5 m

of standing water for 2 months in summer (Spath 1988).
The main tree species from the European hardwood floodplain forest we examined

(F. excelsior, Q. robur and U. minor) showed a strong morphological response to partial

submergence. This has also been found in species from hardwood floodplain forests in

temperate regions on other continents (Hook & Brown 1973; Pereira & Kozlowski

1977; Sena Gomes & Kozlowski 1980; Newsome et al. 1982; Tang & Kozlowski 1982;

Tang & Kozlowski 1984; Angeles et al. 1986; Yamamoto et al. 1995). Of the two species

of the softwood floodplain forest we examined, A. glutinosa showed a particularly high

tolerance of partial submergence. It has been found that seedlings of A. glutinosa
survive being partially submerged for almost the entire growing season (Gill 1975). In

our experiment, seedlings of P. nigra also showed a high tolerance ofpartial submergence,

but little morphological response. However, physiological responses such as anaerobic
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metabolismand dormancy are also important to survive flooding (Joly 1991), so perhaps

the survival of P. nigra depends more on such physiological or metabolic adaptations.

Our results also show that tolerance of total submergence in clear water correlates

with tree zonation. Seedlings of tree species from hardwood floodplain forest were less

tolerant than seedlings of species from softwood floodplain forest. When seedlings were

totally submerged, the depth of water had no effect on their survival. Light availability

only had an effect on flooding tolerance when it was strongly reduced, and at a level

of 15% of full daylight no effect was found. However, light levels are strongly reduced

in turbid river water (Banga et al. 1995). Moreover, seedlings of F. excelsior emerge

Quercus robur

Fraxinus excelsior

Fig. 5. Change in stem height (mean+ SD) 1 year after flooding compared to stem height at the start of the

flooding period in relation to its duration. Solid symbols indicate total submergence, open symbols indicate

partial submergence.
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mainly at sites with less than 10% of full daylight. From this we infer that a further

decrease in light caused by flooding with turbid water in the growing season leads

easily to increased mortality of F. excelsior seedlings during flooding. The more severe

effect of total submergence at low light intensities is attributableto a strong reduction

of photosynthesis. Underwater photosynthesis can be important for the survival of

plants (Laan & Blom 1990; Schliiter et al. 1993). Although leaves are already shed after

only a few weeks of total submergence, young stems, especially those of A. glutinosa

and F. excelsior, also have green photosynthetically active tissue.

Seedlings of species from hardwood floodplain forests showed only little extension

growth compared with species from softwood floodplain forests. They are therefore

less able to avoid total submergence. When floods are 0 5 m deep, the slowly growing

F. excelsior, Q. robur and U. minor seedlings cannot avoid being totally submerged

during their first 3 years.

A period of 4 weeks of total submergence in spring was enough to damage tree

seedlings and reduce extension growth. The shorter plants are less likely to avoid total

submergence during the next flood and therefore have less chance of surviving. In

contrast, partial submergence for up to 3 months had little or no effect on the extension

growth of seedlings of main tree species from floodplain forests. Indeed, a small increase

was found in F. excelsior and Q. robur, although this is of little importance in situations

where floods are deep. A small negative effect of prolonged partial submergence on the

extension growth of these two species had previously been reported by Frye & Grosse

(1992).

The flood tolerance of species we examined depends clearly on flood depth. Their

seedlings have a much greater ability to endure flooding when only partly submerged

than when totally submerged. The decrease in light availability with increasing water

depth in turbid water may further reduce their tolerance of total submergence. Rhine

water is often turbid, and the current hydrological managementof the Rhine and its

tributaries results in higher flood levels often more than a metre in the Dutch river

forelands. This greatly reduces the possibilities for trees to establish along this river.

Given the present depths of flooding, the zonationof tree species will largely depend

on species tolerance of total submergence. Although seedlings of the main tree species

from hardwood floodplain forests in Western Europe exhibit large adaptations to partial

submergence and can survive such submergence for long periods in the growing season,

they are sensitive to total submergence, especially at low light availabilities. They are

unable to avoid total submergence by rapid extension growth. This strongly limits the

feasibility of restoring of hardwood floodplain forests on low-lying sites along the

Rhine.
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